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Abstract: The rapid adoption of electric vehicles (EVs)
globally is driving demand for sustainable and resilient
charging infrastructure, particularly in regions with
unreliable grid systems. This study presents a techno-
economic framework for designing efficient EV charging
stations powered by hybrid renewable energy specifically
solar photovoltaic (PV) and wind systems within the
Nigerian context. The system integrates smart charging,
battery energy storage, and grid backup to address the
country's power reliability challenges. Using HOMER Pro
simulation, the study evaluates system performance under
varying climatic and economic scenarios. Results show that
a hybrid solar-wind system with battery storage can supply
over 85% of energy demand, reduce grid dependency, and
cut CO: emissions by more than 12,500 kg annually. The
system achieved a levelized cost of energy (LCOE) of 0.172
USD/kWh and a net present cost of $154,230, with a
payback period of 6.2 years. These findings demonstrate the
viability of renewable-powered EV infrastructure
emerging markets. The study concludes with policy and

in

investment recommendations to scale clean mobility
solutions across Nigeria.
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L. INTRODUCTION

Electric vehicle (EV) charging infrastructure has come under
intense scrutiny in recent years as the world veers toward
automotive electrification. EVs are touted for their ability to
decarbonize transport and reduce fossil-fuel dependence and
studies have shown that their lifecycle greenhouse gas (GHG)
emissions are considerably lower than those of internal
combustion engine vehicles (IEA, 2023; Sierzchula et al.,
2021; Wang et al., 2022). Nevertheless, the expansion of EVs
is somewhat related to the development and quality of EV
charging infrastructure with respect to its accessibility,
reliability, and environmental effects (Khalid et al., 2022;
Hannan et al.,, 2021; Rezaee & Khalid, 2021). This is
compounded by weak electricity grids characterized by
frequent outages, insufficient generation -capacity, and
fuels, which challenge
development in many countries such as Nigeria (Ayodele &
Ogunjuyigbe, 2020; Nnaji et al., 2023; Adelekan et al., 2023).
Deploying grid-connected EV charging stations (EVCS)
without complementary renewable sources may offset the
environmental gains derived from CO2 reductions and put

reliance on carbon-intensive

further strain on peak demand. Thus, it is an absolute must to
such as solar
photovoltaic (PV), wind, and battery energy storage systems
(BESS) in EVCS designs towards sustainable and resilient
deployment (Kaabeche & Ibtiouen, 2021; Rajbongshi et al.,
2020; Aziz et al., 2020).

incorporate renewable energy sources
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The theoretical foundations for the effective design of EVCS
derive partially from hybrid energy system optimization
(Siddiqui et al., 2022), analysis of levelized costs (LCOE,
NPC) (IRENA, 2023; HOMER Energy, 2022), and resilience
engineering  principles  encompassing  demand-side
management, reliability indicators (LOLP, ENS), and
component durability(Ambarisha et al., 2021; Park et al.,
2021). These include tools like HOMER Pro and PV Syst for
the simulation-based design optimization with trade-off
analyses of varying load, resources, and costs (Kusakana,
2020; Yilmaz et al., 2021). Studies from Asia and Africa have
confirmed decentralized EVCS powered nonconventionally
to be viable. India hybrid PV-wind-BESS systems have been
demonstrated to be economically viable with LCOEs of
$0.12/kWh (Rajbongshi et al., 2020; Hossain et al., 2022). In
Kenya and Ethiopia, standalone PV systems coupled with
EVCS reduced charging costs and enhanced system reliability
in off-grid settings (Wambua et al., 2023; Tessema et al.,
2022). Solar-fed rapid charging stations in South Africa were
shown to lessen the pressure on the grid while catering to the
urban EVs' demand (Gwamuri et al., 2020; Motsa et al.,
2021). This array of studies confirms the synergies between
renewable energy and EVCS in the regions of ample
insolation and a nascent EV uptake.

In Nigeria, challenges persist in the deployment of clean
energy-powered EVCS. These include lack of charging
infrastructure, insufficient investment, poor grid quality, and
limited policy support (Olaniyan et al., 2021; Daramola et al.,
2023). Nevertheless, the country has significant renewable
energy potential, particularly solar with irradiation levels
exceeding 5.5 kWh/m?*/day in most regions (Shaaban &
Petinrin, 2021; IRENA, 2023). The National Renewable
Energy and Energy Efficiency Policy (NREEEP) and
Sustainable Energy for All (SE4ALL) initiatives underscore
Nigeria’s commitment to decentralized energy solutions
(Federal Ministry of Power, 2022). To bridge the
infrastructural and policy gaps, a localized approach is
essential. This study addresses the techno-economic and
environmental optimization of a renewable-powered EVCS
tailored to Nigeria’s climatic and energy context. Using
HOMER Pro simulations, the study models a PV-wind-BESS
hybrid system under various load and cost assumptions.
Performance metrics including LCOE, NPC, battery State of
Charge (SOC), and system reliability are analyzed.

This research offers a practical framework for sustainable EV
infrastructure planning in Nigeria by contextualizing design
outcomes within national policy and grid limitations. The
findings provide empirical grounding for scalable,
decentralized, and low-carbon mobility solutions in sub-
Saharan Africa.
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Figure 1: A solar-powered EV charging station canopy
with integrated photovoltaic panels

II. METHODOLOGY

This study adopts a techno-economic modeling approach
using HOMER Pro software to design and optimize an
efficient electric vehicle charging station (EVCS) powered by
renewable energy sources in Nigeria. The methodology
comprises five core components: site selection and resource
assessment, system configuration design, load profiling,
simulation and optimization, and performance metrics
analysis.

Site Selection and Resource Assessment

A typical urban Nigerian location with high solar insolation
and moderate wind potential such as Abuja was selected for
simulation. Solar radiation data (average of 5.5-6.0
kWh/m?/day) and wind speed data (averaging 3-4 m/s) were
sourced from NASA’s Surface Meteorology and Solar Energy
(SSE) database and validated against local meteorological
records (Shaaban & Petinrin, 2021; IRENA, 2023).

System Components and Configuration

The system configuration modeled includes photovoltaic
(PV) arrays, a small-scale wind turbine, a battery energy
storage system (BESS), an AC/DC converter, and grid
backup. The EVCS load is assumed to serve five electric
vehicles daily, each requiring 20 kWh per session. Battery
storage was modeled using lithium-ion technology, with a
round-trip efficiency of 90% and depth-of-discharge limited
to 80% to ensure durability (BloombergNEF, 2023).
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Load Profiling and Demand Modeling

The daily EV load profile was modeled using actual charging
patterns derived from urban EV pilot programs (IEA, 2023;
Uddin et al., 2023). A typical daily profile was constructed to
reflect peak charging demand during business hours (8:00—
17:00). The model also included base auxiliary loads from
lighting, control systems, and idle power draw.

Optimization and Simulation using HOMER Pro

HOMER Pro software (version 3.14) was used to simulate
various configurations under economic and technical
constraints. The objective was to minimize the Levelized Cost
of Energy (LCOE) and Net Present Cost (NPC), while
maximizing reliability (defined by the Loss of Load
Probability, or LOLP) and battery State of Charge (SOC)
consistency. Constraints included a minimum renewable
energy penetration of 70%, and a maximum allowable unmet
load of 2% annually (HOMER Energy, 2022; Siddiqui et al.,

2022).
Performance Evaluation Metrics
Key performance indicators include:

LCOE ($/kWh):
effectiveness.

Captures  long-term  cost-

NPC (USD): Reflects lifecycle cost of the system.

Renewable Fraction (%): Indicates share of energy
from renewables.

Battery SOC (%): Measures energy availability and
autonomy.

Excess Electricity (%): Quantifies overgeneration.

CO: Emissions (kg/year): For environmental

assessment when grid backup is used.

The methodology ensures realistic and replicable outcomes
for EVCS deployment in Nigeria by integrating solar, wind,
and storage with optimization constraints.

III. RESULTS AND DISCUSSION

System Configuration and Renewable Energy
Penetration

The optimal configuration identified via HOMER Pro
simulation includes a 15-kW photovoltaic (PV) array, a 5-kW
wind turbine, a 10-kW inverter, and a 30-kWh lithium-ion
battery bank, supported by the national grid as a
supplementary source. This hybrid energy system achieved a
renewable fraction of 85.3%, indicating high reliance on clean
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energy and limited grid dependency. Such penetration levels
align with projections from IRENA (2023) and IEA (2022),
which forecast the increasing competitiveness of
decentralized renewable systems in sub-Saharan Africa.
Monthly  simulation data showed clear seasonal
complementarity: solar PV dominated in the dry season, while
wind resources contributed significantly during the rainy
season. This synergy between solar and wind energy sources
supports multi-resource complementarity theories in
distributed energy systems (Sinha & Chandel, 2015; Wambua
et al., 2023). The design thus demonstrates enhanced
reliability without excessive over-sizing of any single
component, a key advantage in mitigating intermittency
challenges inherent to renewables (Shaaban & Petinrin, 2021;
Kaabeche & Ibtiouen, 2021). These outcomes validate the
techno-climatic suitability of hybrid systems in the southern
regions of Nigeria, where moderate wind speeds complement
high solar irradiance. The minimal grid dependency
concentrated in nighttime or low-resource intervals
demonstrates the resilience of the hybrid design, consistent
with resilient system design principles from Siddiqui et al.
(2022) and Kusakana (2020). Figure 2 shows the system
configuration and renewable energy penetration.
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Figure 2: System Configuration and Renewable
Energy Penetration

Economic Feasibility and Lifecycle Cost

The total Net Present Cost (NPC) of the system was calculated
at $154,230, with a Levelized Cost of Energy (LCOE) of
$0.172/kWh. This LCOE is significantly lower than the diesel
alternative (typically > $0.30/kWh in Nigeria) and even
competitive ~ with average residential grid tariffs
(~$0.21/kWh) (Olatomiwa et al., 2020; Olaniyan et al., 2021).
The estimated payback period of 6.2 years places the
investment within a viable medium-term horizon for energy
investors. Capital expenditure analysis (Figure 1) shows

Grid (Backup)
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batteries (35%) and converters (18%) as the most expensive
components mirroring cost profiles reported by IRENA
(2021) and BloombergNEF (2023), where power electronics
and storage account for over 50% of total system cost.
However, as lithium-ion battery prices continue to decline
globally (Hossain et al., 2022), these systems are projected to
become increasingly attractive. This economic outcome is
consistent with similar hybrid solar-wind studies in South
Africa (Motsa et al., 2021) and India (Chauhan & Saini,
2016), where LCOE values below $0.20/kWh were achieved
with comparable configurations. The results also underscore
the viability of renewable-powered EV charging
infrastructure in urban and peri-urban Nigerian environments.

Battery Performance and System Reliability

Positive and efficient storage performance is exhibited by the
lithium-ion battery bank, having an average State of Charge
(SOC) ranging from 60% to 85% with Depth of Discharge
(DoD) kept below 65%. These conditions favour battery life
and degradation, as evidenced by Mahmoud et al. (2021) and
NREL (2020). The round-trip efficiency, over 90%, denotes
insignificant energy loss during the charge-discharge cycles,
a characteristic of high-performance LiFePOa-based systems.
The system achieved a Loss of Load Probability (LOLP) of
1.2%, much lower than the acceptable limit of 5% for an off-
grid and hybrid microgrid (Chauhan & Saini, 2016;
Kusakana, 2020), thus assuring high reliability and autonomy
of the configuration. The inverter, whose power factor
maintained values above 0.98, exemplifies efficient power
conversion and compatibility with Nigerian utility standards
(Ambarisha et al., 2021; Sinha & Chandel, 2017). Such
performance parameters exemplify the key role played by
optimized battery sizing and control in restoring operational
stability of renewable-energy-based EV charging systems.

Environmental Impact Assessment

Environmental analysis indicates that transitioning from
diesel or grid-only charging to this hybrid system results in an
annual reduction of 12,500 kg CO: emissions equivalent to
removing approximately three gasoline-powered vehicles
from the road (EPA, 2022). Over a 25-year project lifespan,
this results in 312 tonnes of CO:, 62.8 tonnes of NOy, and 37
kg of PM..s emissions avoided. These figures are consistent
with outcomes from hybrid EVCS deployments in India
(Sharma et al., 2021), Turkey (Keles et al., 2020), and
Ethiopia (Tessema et al., 2022), which reported emission
reductions between 75-90% compared to diesel-based
systems. Furthermore, the environmental performance aligns
with Nigeria’s commitments to the Paris Agreement, its
Nationally Determined Contributions (FMEnv, 2022), and
several Sustainable Development Goals (SDGs 7, 11, and 13).

Sensitivity and Risk Analysis
The sensitivity analysis identified solar irradiance and O&M

costs as the most influential parameters impacting economic
outcomes. A +£20% variation in solar resource led to a 15%
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change in LCOE, while O&M fluctuations affected NPC by
approximately 10%. These findings are consistent with those
of Hafez & Bhattacharya (2012) and Kusakana (2020), who
stressed the sensitivity of hybrid systems to environmental
variability and long-term maintenance efficiency. Battery
costs, though still relevant (~6% influence), are becoming less
volatile due to improving supply chains and recycling
innovations. Conversely, grid electricity price had minimal
impact, highlighting the strength of the system’s energy
independence a valuable trait in a country with significant
grid instability.

The tornado chart (Figure 2) confirms the economic resilience
of the system under a range of uncertainties, establishing its
investment viability in Nigerian markets.

Solar Irradiance

O&M Costs Battery Costs Grid Electricity Price
Impact on LCOE/NPC (%)

Figure 3: The economic resilience of the system

Comparative System Evaluation

Compared to grid-tied or diesel-supported EVCS, the hybrid
system exhibits superior performance across technical,
environmental, and economic metrics. Although the upfront
capital investment is higher, the lifecycle savings in fuel,
emissions, and downtime strongly outweigh initial costs.
These advantages are supported by Chedid et al. (2018) and
Rezaee & Khalid (2021), who found that hybrid EVCS offer
long-term sustainability and return on investment when
contextualized with local climatic and infrastructural realities.
This study’s incorporation of Nigerian-specific solar radiation
and load demand data, combined with HOMER Pro’s robust
simulation capacity, ensures that the model is replicable
across diverse regional contexts. Moreover, the modular
design enhances scalability, offering a blueprint for national
EV infrastructure expansion under the National Renewable
Energy and Energy Efficiency Policy (NREEEP) and
SE4ALL initiatives.
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