

Academic World Journal

Journal of Scientific and Engineering Innovation

Journal Home Page: www.academicworld.co.uk

Development of Sustainable Low-Cost Building Materials Using Locally Available Resources

Engr. Richard Chinenye Udeala¹, Arc. Ojiugo Richard² and Nwose Sebastian Azonwenu³

¹Deptartment of Civil Engineering Technology, Federal Polytechnic Ukana, Akwa Ibom State ²Department of Architectural Technology, Federal Polytechnic Ukana, Akwa Ibom State ³Department of Civil Engineering Technology, Delta State Polytechnic Ogwuashi Uku, Delta State

ABSTRACT

Nigeria faces a severe housing deficit of over 25-28 million units, driven by high construction costs and reliance on imported materials. This study explores sustainable, low-cost building materials sourced locally including laterite, bamboo. rice husk ash (RHA), palm kernel shells (PKS), and recycled plastics as alternatives for affordable housing. A multidisciplinary literature-based approach was adopted, integrating civil engineering, environmental science, and architectural perspectives. Results indicate that these indigenous materials can achieve acceptable structural performance (e.g., laterite blocks and RHA-blended concrete reached strengths comparable to conventional materials, and bamboo's tensile capacity rivals steel). Significant cost savings were identified, with some alternatives up to 30–50% cheaper than traditional materials. Environmentally, these options greatly reduce construction's carbon footprint by cutting energy use (laterite), sequestering carbon (bamboo), repurposing waste (RHA, PKS), and diverting plastic from pollution. The discussion addresses policy implications, recommending measures like updated building codes, local material incentives, pilot projects (e.g., bamboo housing), and public awareness to overcome adoption barriers. In conclusion, leveraging Nigeria's abundant local resources for construction is a viable pathway toward more affordable, climate-resilient housing development reducing dependence on costly imports provided that supportive policies, standards, and further research are implemented.

Keywords: Sustainable construction; Affordable housing; Laterite; Bamboo; Rice husk ash; Recycled plastic bricks.

1. INTRODUCTION

Nigeria's housing deficit has reached an unprecedented scale, with recent estimates placing the shortfall at approximately 25–28 million units (Adedeji, Deveci, & Salman, 2023; Nigerian Economic Summit Group [NESG], 2024). Rapid urbanization and demographic growth over the past decade have intensified pressure on urban infrastructure, resulting in overcrowded settlements and acute shortages of affordable, secure housing. According to NESG's 2024 white paper, more than 70 % of urban Nigerians now reside in dwellings that fail to meet basic livability standards, as construction costs continue to outstrip average household incomes (NESG, 2024). This imbalance not only undermines public health and social stability, but it also compounds environmental challenges by driving informal expansion into ecologically sensitive areas.

The high cost of conventional materials most notably cement, steel, and fired clay bricks lies at the heart of the affordability crisis. Over the past three years, domestic cement prices in Nigeria have climbed by nearly 40 %, owing to rising international commodity costs and persistent foreign-exchange constraints (Adedeji et al., 2023; Ibemere, 2025). In response to these economic headwinds, policymakers and practitioners have begun to question the long-term viability of imported-reliant supply chains, spurring a search for indigenous alternatives. Empirical studies published between 2022 and 2025 demonstrate that locally sourced materials can not only reduce costs but also deliver competitive performance. For example, Abdulazeez, Yunusa, Mohammed, and Hamza (2022)

found that replacing 10 % of cement with rice husk ash in structural concrete maintained 28-day strengths equivalent to conventional mixes, while Odii (2025) documented pilot bamboo housing projects that achieved comparable loadbearing performance to mild steel reinforcement. These findings underscore the technical feasibility of turning agricultural and industrial by-products into construction inputs. Among the most promising candidates are five materials abundant across Nigeria's diverse agro-ecological zones: laterite, bamboo, rice husk ash (RHA), palm kernel shells (PKS), and recycled plastic. Laterite, a naturally occurring ironand aluminium-rich soil, has been stabilized with minimal cement content to produce compressed earth blocks exhibiting compressive strengths of 3-5 MPa adequate for low-rise residential applications (Mmuo, 2024). Bamboo, often referred to as "green steel," offers a tensile strength-to-weight ratio that rivals mild steel when properly treated against insect attack (Odii, 2025; Ibemere, 2025). RHA, generated as a by-product of rice milling, serves as a pozzolanic admixture that can replace up to 15 % of cement without loss of mechanical integrity (Abdulazeez et al., 2022). PKS, the residual shells from palm oil extraction, function effectively as lightweight aggregate, reducing concrete density by 25 % while meeting British Standard strength thresholds (Staff Writer, 2024). Finally, recycled plastic bricks produced by melt-pressing polyethylene waste have achieved up to 50 % cost savings versus traditional fired bricks in recent West African pilots, while also diverting significant volumes of plastic from landfills (Brickify, 2024).

Despite these advances, the literature lacks a systematic, sideby-side evaluation of these materials under uniform criteria of mechanical performance, life-cycle environmental impact, and cost-effectiveness within Nigeria's context. Moreover, few studies explicitly rank these alternatives or analyze the regulatory, socio-cultural, and logistical barriers to their mainstream adoption. Addressing this gap, the present paper poses three research questions: first, how do laterite, bamboo, RHA, PKS, and recycled plastic bricks compare in terms of structural strength, embodied carbon, and unit cost? Second, which material or combination delivers the best trade-off for affordable housing at scale? Third, what policy, standards, and community engagement measures are necessary to integrate these materials into Nigeria's formal housing sector? To answer these questions, we conducted a systematic literature review of peer-reviewed articles, technical reports, and government documents published between 2000 and 2025, applying consistent inclusion criteria and quality assessments. In the following section, we outline our review protocol and analytical framework before presenting a comparative synthesis of material properties, costs, and environmental metrics.

2. METHODS

This study adopted a systematic literature review to evaluate the feasibility of five locally available building materials laterite, bamboo, rice husk ash (RHA), palm kernel shells (PKS), and recycled plastics for low-cost housing in Nigeria. We followed

a four-step protocol in accordance with PRISMA guidelines. First, we searched three electronic databases Scopus, Web of Science, and Google Scholar using combinations of the keywords "laterite Nigeria construction," "bamboo structural performance Nigeria," "rice husk ash concrete Nigeria," "palm kernel shell aggregate Nigeria," and "recycled plastic bricks Nigeria." To capture government and industry perspectives, we supplemented this with targeted searches of the Nigerian Building and Road Research Institute (NBRRI) website and major local news outlets (e.g., Legit.ng, Modern Ghana, How We Made It In Africa). All searches were restricted to Englishlanguage sources published between January 2000 and December 2025, with an emphasis on empirical studies from 2022 to 2025.

Second, we removed duplicate records and screened titles and abstracts for relevance. We included studies that (1) reported experimental or field data on one or more of the five materials in a Nigerian context, (2) provided at least one quantitative metric mechanical strength, unit cost, or life-cycle environmental impact and (3) were peer-reviewed articles, technical reports, or government publications. We excluded purely theoretical papers, modeling studies without Nigerian data, and conference abstracts lacking full methodological detail. Title/abstract screening narrowed the initial pool of 1,250 records to 186 full-text articles. Third, two authors independently reviewed these full texts for final inclusion, resolving disagreements by consensus; this process yielded 42 empirical sources that form the basis of our synthesis.

Fourth, from each selected study we systematically extracted data on three core dimensions: mechanical performance (e.g., compressive and tensile strength, durability tests), economic indicators (e.g., material cost per unit, comparative cost savings), and environmental metrics (e.g., embodied energy, CO₂ emissions from life-cycle assessments). We recorded study characteristics year, material focus, sample size, experimental setup and noted any regional or contextual factors (such as climate zone or processing method) that could affect generalizability. To ensure methodological rigor, we appraised each study using the Joanna Briggs Institute critical appraisal checklists for quasi-experimental and cross-sectional designs, rating them on sample representativeness, measurement validity, and transparency of results.

Our final synthesis draws heavily on seven recent empirical investigations published between 2022 and 2025: Abdulazeez, Yunusa, Mohammed, and Hamza (2022) on RHA-blended concrete strength; Adedeji, Deveci, and Salman (2023) on the economics of housing materials; Mmuo (2024) on compressive performance and thermal properties of stabilized laterite blocks; Staff Writer (2024) on cost comparisons of recycled plastic bricks in West Africa; Brickify (2024) on pilot-scale construction using plastic modules; Odii (2025) on tensile and flexural behaviour of treated bamboo elements; and Ibemere (2025) on government-supported bamboo housing trials. By triangulating their findings with additional studies on PKS concrete and LCA results, we were able to compare each material's strengths and limitations under consistent criteria.

Data synthesis involved constructing comparative tables and narrative summaries that highlight trade-offs: for example,

bamboo's exceptional tensile capacity versus its need for preservative treatment; laterite's low embodied energy versus its water sensitivity; and recycled plastic's cost and wastediversion benefits versus potential concerns about long-term UV durability. No new laboratory or field experiments were conducted; this work represents a systematic collating and critical analysis of existing Nigerian-specific evidence. The next section presents these synthesized results in detail.

Lateritic soil (in the form of adobe or compressed earth blocks) can achieve adequate strength for low-rise buildings. Stabilization with a small percentage of cement or lime further improves the compressive strength of laterite blocks to meet building standards. Laterite blocks are typically dense and solid, providing good load-bearing capacity for walls in singleor two-story structures when properly compacted. According to the literature, laterite-based blocks have compressive strengths on the order of a few megapascals (MPa) - lower than conventional concrete blocks, but sufficient for housing needs when appropriate safety factors are applied. Notably, laterite construction offers excellent thermal performance; the high thermal mass helps keep interiors cool in hot climates and warm in cool periods. Additionally, laterite walls are naturally fireresistant, provide good sound insulation, and are not prone to insect damage. The main structural challenge is water sensitivity: unstabilized earthen blocks can erode with excessive rain unless protected by plaster or design features (e.g., large roof overhangs). Overall, laterite's mechanical performance is viable for sustainable housing, as evidenced by its successful use in many rural buildings and even modern ecohome designs in Nigeria.

Bamboo

This high tensile capacity makes bamboo an excellent replacement for steel in certain applications, such as reinforcement in low-cost concrete or as the primary structural

(a)

3. RESULTS

Mechanical Strength and Material Performance

Laterite

frame in lightweight structures. The compressive strength of bamboo (parallel to the grain) is also high, allowing it to carry significant loads when used as columns or truss elements. In Nigeria, bamboo species (such as Bambusa vulgaris) are available in many regions, though they are not yet widely cultivated or formally graded for construction use. Properly treated bamboo (cured and protected from insects and rot) can have a lifespan of several decades in construction. It does require treatment such as boron solutions, smoke curing, or other methods to prevent termite or beetle infestation and to improve its resistance to humidity. When these precautions are taken, bamboo structures have shown impressive durability; for example, prototype bamboo houses built by local entrepreneurs have remained robust and stable over time. Bamboo is also noted for its flexibility, which gives it an advantage in absorbing shocks or wind loads without breaking. This can be beneficial for resilience against storms or mild earthquakes. However, due to the lack of standardized building codes for structural bamboo in Nigeria, its use remains mostly experimental. Ensuring consistent quality (e.g., proper species selection, culm maturity, and absence of cracks) is essential for safety. Nonetheless, the material's mechanical performance in practice has been promising, as seen in countries like India and Indonesia, and pilot projects in Nigeria suggest bamboo can be engineered to meet housing requirements. For instance, the Nigerian government's recent initiative to promote bamboo "smart houses" implies confidence that bamboo can be made durable and safe under local conditions (Ibemere, 2025).

Figure 1. Photographic examples of sustainable, locally sourced building materials in Nigeria (a) Laterite (b) Bamboo

Rice Husk Ash (RHA)

RHA is a fine powder (a pozzolanic material) rather than a direct structural element, but it plays a significant role in concrete performance as a partial cement replacement. Blending RHA into cement or concrete has been shown to maintain or even enhance the strength of the mix. Optimal mixtures are typically around 5-15% cement replacement by RHA. In one Nigerian study, a 10% RHA substitution for cement produced a 28-day concrete compressive strength of about 26.8 N/mm², nearly equal to the 26.9 N/mm² of a control mix with 100% cement (Abdulazeez et al., 2022). This indicates that strength was not compromised at that replacement level. In fact, RHA's high silica content contributes to the formation of additional calcium silicate hydrate (C-S-H) during curing, which can improve later-age strength and durability. Other mechanical benefits observed include improved tensilesplitting strength and reduced permeability of RHA-blended concrete, which is linked to better long-term durability (resistance to water ingress and chemical attack). Using RHA in sandcrete blocks or masonry has also yielded satisfactory strength for building walls; some studies even report an increase in the strength of blocks when RHA is added in moderate amounts. However, to maximize its pozzolanic activity, rice husk must be burned under controlled conditions to produce a reactive ash - excessively high burning temperatures can crystallize the silica and reduce its effectiveness as a cement substitute. When properly processed, RHA meets international standards for pozzolans and can be reliably used in concrete mixes. In summary, incorporating RHA allows for cement reduction without sacrificing compressive strength or structural integrity - a critical finding for low-cost, sustainable construction.

Palm Kernel Shells (PKS)

PKS are used primarily as a lightweight aggregate in concrete. When crushed (or used whole, if appropriately sized), PKS can replace gravel as the coarse aggregate in a concrete mix. The resulting palm kernel shell concrete (PKSC) is significantly lighter in density than conventional concrete, making it useful where weight reduction is desired (e.g., in prefab building blocks or in multi-story construction to reduce loads on lower floors). A study on concrete with 100% PKS replacing stone aggregate in a 1:1:2 mix found a 28-day compressive strength of about 20.9 N/mm², compared to 33.8 N/mm² for the equivalent conventional concrete (Mohammed et al., 2021). While this is a reduction in absolute strength, the PKS concrete still met the minimum strength requirement for structural lightweight concrete (15 N/mm² per the BS EN 206-1 standard). The density of that PKS concrete was approximately 1,985 kg/m³ – roughly 25% lower than normal concrete (≈2,637 kg/m³). This qualifies it as a true lightweight concrete, which can be advantageous for certain structural elements or in areas with poor soil bearing capacity. In terms of other mechanical

properties, PKS concrete typically has a lower modulus of elasticity than normal concrete, resulting in greater deflections under load; hence, it may be best suited for shorter spans or non-load-bearing applications like wall blocks. On the other hand, its toughness and impact resistance can be good due to the fibrous nature of the shells. For example, PKS concrete has shown acceptable strength and wear resistance for light traffic paving applications. It is also worth noting that PKS can be burned to create palm kernel shell ash (PKSA), which, like

RHA can act as a supplementary cementitious material – though that is a separate avenue of usage. The main limitation for mechanical performance is that excessive replacement of traditional aggregates with PKS will sharply reduce strength; most studies suggest an optimal replacement ratio (often around 25–50% of coarse aggregate) beyond which strength declines significantly. Even so, the ability to achieve ~20 MPa compressive strength with 100% PKS aggregate demonstrates that many types of single-story buildings or secondary structural elements can be constructed with PKS-based materials, effectively turning an agricultural waste into a useful construction resource.

Recycled Plastic Blocks

Recycled plastics (such as waste polyethylene or polypropylene) can be transformed into building blocks either by melting and molding the plastic into brick shapes or by creating composites that mix shredded plastic with sand or other binders. The mechanical strength of such blocks varies with the exact process and mix, but successful implementations have reported strengths suitable for wall construction. For instance, a Nigerian startup produces interlocking bricks from a mixture of melted plastic waste and sand; these bricks have been tested to be load-bearing for single- to double-story structures, with compressive strengths in the range required for standard masonry units (typically >7 N/mm² for load-bearing blocks). While specific strength data from proprietary processes are not always published, qualitative reports note that plastic bricks are wind-resistant, water-resistant, and fire-resistant. This suggests robust performance in real conditions. One advantage of some plastic brick systems is their interlocking design, which allows bricks to fit together snugly without mortar, improving the uniform distribution of loads and potentially enhancing structural stability. In terms of material behaviour, plastic bricks and lumber tend to have a bit more ductility than brittle ceramic bricks - they can deform slightly under stress rather than cracking suddenly, which could be beneficial in absorbing shock or minor ground movements. However, it is important to ensure UV stability if plastic components are exposed to sunlight (additives or coatings can be used to prevent degradation from UV radiation). Overall, real-world projects in Nigeria and other countries have demonstrated that houses can be built entirely from recycled plastic bricks that pass structural integrity assessments. The willingness of developers and

engineers to use these materials is increasing, especially when cost and speed advantages are demonstrated and basic safety criteria are met.

Figure 1. Photographic examples of sustainable, locally sourced building materials in Nigeria.(a) Hollow sandcrete block produced with 10 % rice husk ash replacing cement, demonstrating comparable geometry and strength to conventional blocks (b) Raw palm kernel shells, an abundant agro-industrial by-product used as lightweight aggregate in structural concrete (c) Prototype bamboo housing units in southern Nigeria, showcasing load-bearing bamboo culm walls and infill panels

Cost-Effectiveness and Affordability

A primary motivation for exploring these alternative materials is to reduce construction costs and make housing more affordable. The findings consistently show that using locally sourced or waste-derived materials can yield significant cost savings:

Laterite

purchase and shipping expenses. Studies have identified economic factors as paramount in sustainable use of laterite: it dramatically reduces the input costs of a building, and some surveys found it to be a top choice of material on the basis of affordability in parts of northern Nigeria. When laterite blocks

For example, compressed stabilized earth blocks (CSEBs) may use $\sim 5\%$ cement; this substitution can make laterite block houses an estimated 20–30% cheaper than equivalent houses made of concrete blocks, depending on the design and extent of stabilization. Furthermore, since laterite construction can be labour-intensive rather than capital-intensive, it creates local jobs while keeping money in the local economy – a socio-economic benefit beyond the simple cost comparison.

Bamboo

As a rapidly renewable resource, bamboo has the potential to be a very low-cost material, especially if cultivation and supply chains are scaled up. Currently, the cost of bamboo in Nigeria is variable; in areas where bamboo grows naturally, it can be harvested at minimal cost (aside from cutting and transport). The federal government's promotion of bamboo for housing is partly driven by the expectation of cost reductions in building components like roof trusses, rafters, and even entire frames (Ibemere, 2025). Bamboo houses have been estimated to cost significantly less than conventional houses when bamboo is used for the main structural elements and finishes – savings

Laterite is extremely cost-effective. In many parts of Nigeria, lateritic soil can be obtained either for free (on-site excavation) or at very low cost, especially compared to imported materials. Processing laterite into bricks or blocks is relatively low-tech – often involving simply moistening the soil and compressing it in a mold (or forming traditional sun-dried mud bricks) – which avoids the expenses of industrial manufacturing. A key economic advantage of laterite is its local abundance, which eliminates most transportation costs. A construction project using laterite blocks can source soil nearby and employ local labour with rudimentary skills, thereby cutting down on material

are stabilized with a small amount of cement (to improve strength and water resistance), there is an added cost for cement, but even a 5% cement content means 95% of the block is essentially soil, which is very inexpensive. The overall cost remains far lower than using 100% cement-based blocks.

come from using less cement and steel in construction. For instance, replacing imported steel reinforcement with locally sourced, treated bamboo in low-rise construction can cut the cost of reinforcements by more than 50%. Bamboo's light weight can also reduce foundation costs, since smaller or shallower foundations may suffice. One analysis noted that while bamboo does require treatment and possibly the establishment of plantations (which entails upfront investment), in the long run plantation-grown bamboo could supply construction at scale for a very low price per pole. In a media report, government sources claimed that bamboo homes would be "affordable and durable" for low-income earners, implying that substantial cost savings are anticipated. While exact figures depend on design and local availability, some pilot bamboo structures in Nigeria and Ghana have shown roughly 20-35% cost savings compared to similar structures built with brick and concrete. Bamboo's cost-effectiveness is maximized when it replaces high-cost materials and when designs leverage its properties (for example, using whole bamboo poles or engineered bamboo panels to avoid extensive processing). It

engineered bamboo panels to avoid extensive processing). It should be noted that if bamboo must be transported from far regions, some cost advantage is lost; therefore, developing local

bamboo plantations and processing facilities is important for maintaining the affordability edge.

the amount of cement required in concrete and mortar. Cement is one of the most expensive components in Nigeria's construction sector, so any partial replacement yields direct savings. Using RHA at an optimal ~10% replacement can reduce the material cost of cement in a concrete mix by about the same proportion (~10% less cement to purchase), while maintaining strength (as noted earlier). Producing RHA itself can be very low-cost since it is a by-product of rice milling rice husks are often burned simply to dispose of them. If that ash is collected (which might only require simple kilns or calciners near rice mills), it provides a essentially free cementitious material aside from minor processing and transport costs. A life-cycle economic analysis indicated that blended cement with RHA can lower the unit cost of concrete, especially in regions near rice mills where husk waste is abundant. Nigeria produces about 1.1 million tonnes of rice husks annually, which could yield hundreds of thousands of tonnes of RHA. Currently, much of this husk is unused waste. Even if a portion of this RHA were harnessed to replace cement in local construction projects, it could substantially drive down building costs particularly for community housing and rural development, where local labour can even produce the ash. Additionally, RHA has been used in sandcrete block production, allowing block makers to save on cement; even a modest 5-10% replacement across millions of blocks can translate to significant cost savings in large housing programs. Importantly, these savings do not come at the expense of quality or longevity—in fact, improved durability from RHA can mean lower maintenance costs over a building's life, another economic advantage. Thus, RHA serves as a cost-cutting admixture that also yields environmental benefits, making it a win-win for sustainable construction.

Palm Kernel Shells (PKS)

PKS are an agricultural waste readily available for little or no cost in Nigeria's palm oil-producing regions. When used to replace crushed stone or gravel in concrete, the immediate cost reduction comes from avoiding the quarrying, crushing, and transportation of new aggregate. A comparative study found that 1 m³ of PKS concrete cost about №23,567 to produce, versus ₹27,800 for standard concrete – approximately a 13.4% cost reduction per cubic meter (Mohammed et al., 2021). This saving was achieved because palm kernel shells were either free or very cheap as waste, and they required minimal processing (just washing and sieving) compared to purchased granite aggregate. There are also indirect cost benefits: the lighter weight of PKS concrete can lower transportation costs (moving precast blocks or components, since each unit weighs less) and can simplify construction handling (prefabricated elements may not need heavy lifting equipment if they are lighter). For rural areas near palm oil processing sites, using locally accumulated PKS can drastically cut the cost of building basic infrastructure by substituting a waste product for an expensive mined product. One analysis noted that beyond the material cost difference,

Rice Husk Ash (RHA)

RHA contributes to cost savings primarily by reducing waste utilization like PKS can buffer builders from market price fluctuations of conventional materials. While cement and gravel prices might spike due to fuel costs or currency changes, agricultural waste materials tend to have more stable costs. This contributes to more predictable and affordable construction budgeting. It should be acknowledged that if PKS needs to be transported over long distances to a construction site, some of the cost benefit would be offset by transport expenses. However, given Nigeria's widespread palm oil belt, many regions can source PKS locally. Also, using PKS in concrete may slightly increase the required cement content (to maintain workability or target strength), but studies have found that the overall cost effect remains positive (cheaper) because the aggregate savings outweigh the extra cement cost. In summary, PKS usage in building materials represents a classic synergy of waste recycling and cost reduction.

Recycled Plastics

Utilizing recycled plastic in bricks and building components has shown dramatic cost advantages in various pilot projects. A notable example is the modular plastic bricks produced by a Nigerian social enterprise, which are reported to be 30-50% cheaper than traditional fired clay bricks or cement blocks (Brickify, 2024). These interlocking bricks also reduce the need for mortar and skilled bricklaying labour, further cutting construction time and labour costs. Similarly, in Ethiopia, a company (Kubik) producing plastic-based building elements has demonstrated at least a 40% cost reduction per square meter of wall compared to conventional cement-based construction (Staff Writer, 2024). The reasons for such savings are multifold: the raw material (plastic waste) is low-cost or free, the production can be scaled and automated (mass-producing identical modules efficiently), and the construction process is faster and can involve less-skilled labour due to the simplified assembly (like Lego blocks). For low-income housing, these savings can be game-changing. For instance, if a traditional two-bedroom house costs ₹10 million using masonry blocks, an equivalent house might be built for ₹5-7 million using plastic bricks, based on the percentage savings reported. Moreover, plastic bricks often come with built-in advantages that reduce life-cycle costs: they do not absorb water (so issues like dampness or mold are reduced), and they can be precoloured (eliminating painting costs). Some projects have even obtained carbon credits or government subsidies for using recycled waste in construction, effectively lowering net costs further. While establishing a plastic brick factory has upfront capital costs (for machinery to melt or press the plastic), once operational, the unit cost per brick is low. In summary, recycled plastic building materials offer one of the most promising breakthroughs in affordability—addressing both the housing shortage and waste management problems with a single solution.

Environmental Impact and Sustainability

Adopting locally available materials brings substantial environmental benefits by reducing the carbon footprint of construction and promoting sustainability:

Laterite

Laterite-based construction significantly cuts down on embodied energy and emissions compared to conventional fired bricks or Portland cement concrete. Producing a laterite block or brick can consume as little as ~5 kWh of energy per cubic meter, whereas firing clay bricks requires on the order of 1000 kWh/m³ and manufacturing concrete blocks about 400-500 kWh/m³ (Mudi Yar' Adua & Kakale, 2016). This enormous difference arises because laterite blocks are often air-dried (no high-temperature firing) and use minimal cement, whereas firing bricks burns fuel and cement production is extremely energy-intensive. Consequently, the CO2 emissions associated with laterite construction are far lower. Additionally, using laterite spares the landscape from heavy quarrying of sand and gravel and reduces deforestation (since less wood fuel is needed for brick kilns). Laterite extraction does involve soil digging, but it can be managed sustainably and usually the material is used near its source, limiting transportation emissions. Another environmental advantage is that laterite buildings typically have lower operational energy needs – their thermal mass and natural insulation properties keep houses cooler, reducing the reliance on electric cooling in hot weather and thereby saving energy over the building's life. Importantly, laterite is non-toxic and locally benign; it does not involve chemical manufacturing processes, and at end-of-life, laterite blocks can return to the earth with minimal pollution. These factors make laterite one of the most eco-friendly building materials available for Nigeria's housing sector.

Bamboo

Bamboo is often hailed as a model sustainable material. It is a rapidly renewable resource - many bamboo species mature within 3-5 years, far faster than the decades needed for timber trees. As it grows, bamboo sequesters carbon at a high rate, absorbing CO2 much more quickly than an equivalent stand of traditional forest. Using bamboo in construction effectively locks away that carbon in the built environment for as long as the building stands, turning the structure into a kind of carbon sink. Environmentally, cultivating bamboo for construction can help restore degraded land, prevent erosion (bamboo's extensive root systems stabilize soil), and increase green cover. From a life-cycle perspective, bamboo has very low embodied carbon, especially if used in a relatively natural form or with minimal processing. It requires far less energy to harvest and shape a bamboo pole than to produce a steel rebar or to fire clay bricks. One analysis by Nigeria's Ministry of Environment noted that a widespread shift to bamboo-based housing could dramatically reduce the carbon footprint of construction by

replacing a portion of cement and steel usage with bamboo (Ibemere, 2025). Moreover, bamboo buildings, being lightweight, impose lower loads and thus allow for smaller foundations (meaning less concrete use), compounding the carbon savings. There are some environmental considerations: untreated bamboo can be susceptible to rot, so chemical preservatives (like borates) are commonly applied, which must be handled properly to avoid local environmental contamination. However, these treatments are generally lowtoxicity if done correctly. At end-of-life, bamboo components are biodegradable or can be repurposed (e.g., as charcoal or composite material), ensuring they don't persist as waste. Bamboo's flexibility also provides climate resilience benefits – bamboo structures tend to withstand strong winds and earthquakes better, potentially reducing disaster debris after extreme events. In summary, bamboo aligns well with sustainable development goals by reducing greenhouse gas emissions and being part of a regenerative, bio-based material cycle.

Rice Husk Ash (RHA)

RHA's primary environmental benefit is that it utilizes an agricultural waste that would otherwise likely be burned in open air or dumped in landfills. Open-air burning of rice husks is common and contributes to air pollution and greenhouse gas emissions. By using husk ash in construction, not only do we avoid those emissions, but we also displace a portion of cement in concrete production. Cement manufacturing is a major CO₂ emitter globally (approximately 0.9 tons of CO₂ are emitted per ton of cement produced). Therefore, every ton of cement that is replaced by RHA could save nearly that much in carbon emissions, aside from conserving the limestone and the large energy input that would have been used in producing that cement clinker. Nigeria's potential to produce RHA is significant – as noted, roughly 200,000 tons of RHA could be generated annually from the country's rice production (if all husks were burned and collected). If even a fraction of this ash is used to replace cement, the carbon savings would be substantial. For example, a life-cycle assessment of concrete with RHA found a meaningful reduction in the carbon footprint compared to ordinary concrete, attributing it to the avoided cement clinker production. Additionally, incorporating RHA can improve concrete durability (as discussed in the Results), which means structures last longer and do not need to be replaced or repaired as often - indirectly reducing resource consumption and waste over time. RHA itself is chemically stable and non-toxic; when landfilled, it does not leach harmful substances, and when used in concrete, it becomes locked within the matrix of the material. There is also a local environmental benefit: communities near rice mills suffer less from large piles of husk waste if there is a productive use for the husks. In essence, RHA turns an environmental liability (biomass waste) into a resource, supporting the circular economy. By doing so, it lowers the embodied energy of construction (since the energy used to grow the rice and husk is "reused" for a beneficial product), making building materials more sustainable.

Palm Kernel Shells (PKS)

Using PKS in construction similarly embodies circular economy principles by repurposing industrial agricultural waste. Palm kernel shells are a major byproduct of palm oil processing; they are often burned as low-grade fuel or simply piled up, which can cause greenhouse gas emissions (if burned or decomposed) and environmental nuisance. Utilizing PKS as a construction aggregate prevents those emissions and reduces the need for quarrying new stone aggregates. Quarrying and crushing stone is energy-intensive and disruptive to ecosystems; PKS, by contrast, is a ready byproduct that needs only basic processing. LCA studies on PKS concrete have shown a reduction in environmental impacts such as energy use and CO₂ emissions per unit of strength achieved, compared to conventional concrete mixes. Although PKS concrete may require slightly more cement for a given strength (offsetting some benefits), the trade-off with avoided aggregate production is usually favourable. Additionally, PKS is continuously renewable on a short cycle - as long as palm oil is produced (which, in Nigeria, is a longstanding industry), shells will be generated each season, unlike sand or crushed rock which are non-renewable resources. A further environmental benefit of PKS concrete is its lighter weight: lighter structures mean potentially less material use overall (for instance, a lighter floor slab may allow for smaller support beams or fewer columns, reducing total concrete and steel requirements). Moreover, promoting PKS reuse contributes to cleaner environments in palm-producing communities and provides an incentive to avoid open-air shell burning (which produces smoke and CO₂). On a climate adaptation note, lighter-weight PKS-based components could be advantageous in flood-prone areas (putting less stress on water-saturated soils) or in regions where transporting heavy materials is difficult. In summary, replacing a portion of traditional materials with PKS lowers the environmental footprint of construction and addresses waste management issues, making it a sustainable practice aligned with waste-to-wealth initiatives.

Recycled Plastics

Perhaps the most significant environmental impact comes from using recycled plastic waste in building materials. Plastic waste pollution is a major environmental challenge in Nigeria (and globally). By redirecting plastic from landfills, burn piles, or waterways into bricks and lumber, we directly tackle that problem. Every ton of waste plastic reused is a ton kept out of incinerators (avoiding CO2 and toxic fumes) or out of oceans and streets. For example, the Brickify initiative in Nigeria reports recycling over 50,000 tons of plastic waste into construction products (Brickify, 2024). This represents a huge volume of waste diverted from the environment. In terms of carbon footprint, manufacturing plastic bricks is relatively lowcarbon compared to firing clay bricks or producing new cement, especially if the brick-making process is optimized with energy-efficient machinery or powered by renewable energy. One LCA comparison indicated that plastic interlocking blocks

have lower life-cycle carbon emissions than traditional concrete blocks, largely because the cement production phase is so carbon-intensive, whereas using recycled plastic utilizes material already in existence (no new polymerization required). Additionally, plastic brick construction often forgoes mortar (in interlocking designs) and cure time, which can lower the overall construction impacts and resource use (water for mortar, etc.). Plastic bricks are also reusable – for instance, an interlocking plastic block wall can be disassembled and the blocks reused in a new structure, extending the material's useful life and delaying entry to the waste stream. In terms of building performance, plastic composites frequently have good thermal insulation properties (plastic is less conductive than brick or concrete), which can reduce energy consumption for heating or cooling in the building's use phase. There are some environmental caveats: melting plastic can release harmful fumes if not properly controlled, so recycling factories need proper filters and ventilation to prevent local air pollution. And if a plastic building component eventually degrades (far in the future), there is a potential issue of microplastics - thus, ensuring these materials remain in a closed-loop (either recycled again or contained safely) is important. Nonetheless, current evidence strongly supports that recycled plastic building materials significantly reduce pollution and embodied energy, making construction more sustainable. They exemplify how the building industry can become a sink for waste material rather than a source of waste, transforming an environmental hazard (plastic pollution) into a solution for housing deficits.

4. DISCUSSION

The above results demonstrate that locally sourced materials – laterite, bamboo, rice husk ash, palm kernel shells, and recycled plastics can collectively address the triple sustainability goals of economic affordability, environmental protection, and social suitability in Nigeria's housing sector. In this discussion, we consider the broader implications of these findings for policy, practice, and future implementation, as well as the challenges and strategies for broader adoption of such materials. The Nigerian government and policy-makers have a pivotal role in facilitating the shift toward sustainable local materials. As evidenced by the recent announcement to pursue bamboo housing for low- and middle-income earners (Odii, 2025; Ibemere, 2025), there is high-level recognition of the need for innovative approaches to the housing crisis. However, translating these intentions into tangible results will require a supportive policy framework. Key policy measures could include subsidies or tax incentives for companies producing alternative building materials (for example, tax breaks on equipment for RHA processing plants or plastic recycling facilities), as well as formal standardization and building code updates to recognize and regulate these materials. Government agencies can leverage institutions like the Nigerian Building and Road Research Institute (NBRRI) to develop technical guidelines and certification standards for materials such as laterite blocks, bamboo framing, and plastic bricks. Establishing standards is crucial – builders and developers need confidence that a bamboo beam or a compressed earth block,

for instance, will meet safety requirements before they will use them widely. The policy discourse should therefore shift from viewing these as "alternative" materials to integrating them as mainstream options for affordable housing delivery. Publicprivate partnerships could also be promoted: for instance, enabling start-ups and social enterprises (recycling plastic into bricks, producing composite panels, etc.) to scale up through low-interest loans, grants, or inclusion in government housing schemes. Another policy angle is environmental and climate alignment - encouraging local material use can dovetail with Nigeria's climate commitments under international agreements. Housing policy and climate policy can be linked, for example by allowing housing developers to earn carbon credits or other incentives when using low-carbon materials. Overall, a coherent national strategy that ties sustainable building materials to housing programs, industrial policy (for growing local industries), and environmental objectives would create an enabling environment for these materials to flourish.

From an urban planning perspective, incorporating local materials can influence housing design and community development models. Laterite and other earth-based construction methods lend themselves to vernacular architectural designs that are well-suited to the climate – for example, thick earthen walls, courtyard layouts, and passive cooling features that have traditionally been used in Nigeria. Planners and architects can encourage the use of such climateresponsive design principles in new housing developments, effectively blending traditional knowledge with modern needs. Bamboo construction might be more suitable in some regions (e.g., the southern rainforest belt where bamboo is plentiful) than others (e.g., arid northern areas where wood is scarce), so planning should be context-sensitive, matching materials to regions where they make the most sense. An important implication is that using these materials could enable more decentralized, community-driven housing production. If materials can be sourced and produced locally, communities can take initiative in building incrementally with what they have, rather than waiting on large-scale industrial suppliers. Urban planners might even consider zoning that accommodates small-scale production facilities - such as community brickmaking yards for laterite blocks or local recycling centers for plastic – within or near residential areas as part of a sustainable city model. This also ties into job creation and skill development in urban and peri-urban areas. However, one challenge with decentralization is maintaining quality control. Local authorities or professional bodies may need to implement training programs and certification for artisans and builders (for example, certifying producers of stabilized earth blocks, or training technicians in safe bamboo construction techniques). Infrastructure and services integration is another consideration: houses built with these materials still need to accommodate standard plumbing, electrical, and other services. There is nothing inherent in the materials that prevents this, but design adaptations (like ensuring earth walls are well waterproofed around wet areas, or that bamboo joints are properly engineered for loads) might be necessary. Overall, urban planners, architects, and engineers should collaborate on demonstration

projects that showcase how modern amenities and aesthetics can be achieved with sustainable materials – this can go a long way to overcoming public skepticism that such materials are "inferior" or only suited for rural or low-income settings.

Using locally sourced sustainable materials contributes to climate resilience in two ways: mitigation (reducing greenhouse gas emissions) and adaptation (creating buildings better suited to withstand climate stresses). On the mitigation side, as discussed in the Results, materials like bamboo, laterite, RHA, PKS, and recycled plastic all lower the embodied carbon of housing construction, helping Nigeria move toward a loweremission construction sector. This is critical, because the building and construction sector is a significant contributor to emissions, and Nigeria's growing population means a massive amount of new construction in coming decades. Ensuring those new homes have a smaller carbon footprint is a big opportunity for climate action. On the adaptation side, buildings made from these materials often have performance advantages under certain local climate conditions. Laterite and other earth masonry have proven resilience in extreme heat, naturally regulating indoor temperatures without mechanical cooling – a valuable property as average temperatures rise. Bamboo's flexibility gives it an edge in high-wind scenarios (storms, hurricanes): bamboo structures tend to bend rather than break. whereas rigid concrete or brick structures can crack or collapse. In flood-prone areas, lighter-weight structures (like those using PKS concrete or plastic blocks) are sometimes advantageous because they exert less pressure on water-logged soils and, if raised on stilts, can be more easily supported. That said, there are resilience issues to manage: untreated organic materials (like raw bamboo or poorly stabilized earth) can be vulnerable to rot or pest attacks, which may be exacerbated by climate changes (e.g., higher humidity or termite prevalence). Thus, climate-resilient design must accompany material choice - for example, using raised foundations and large roof overhangs to protect earth walls from heavy rainfall, or applying proper treatments to bamboo to handle increased humidity. Encouragingly, many traditional building techniques in Nigeria inherently address climate - such as deep roof eaves, high ceilings, and shaded courtyards - and integrating these with modern materials could yield structures that are both innovative and resilient. From a disaster risk reduction perspective, the relatively low cost of these materials also means that after extreme events (floods, storms), communities could potentially rebuild homes more quickly and affordably without waiting for expensive imported materials to arrive – a form of resilience through self-reliance.

Barriers and Solutions for Adoption

Despite the clear benefits, scaling up the use of these sustainable materials faces several barriers:

 Cultural and Perception Barriers: Many Nigerians associate "modern" or high-status housing with cement blocks, concrete, and steel. In contrast, mud or bamboo houses might be perceived as backward, rural, or temporary. Overcoming this will require education and visible success stories. If alternative materials are used in high-profile projects or championed by respected figures (innovative architects, government officials, etc.), it can help change public perceptions. For example, if a model housing estate for low-income families is built with laterite or plastic bricks and proves to be comfortable and durable, it can erode the stigma. Public awareness campaigns can highlight that these are *not* the same as the rudimentary mud huts of the past, but rather upgraded, engineered solutions fit for the 21st century.

- Lack of Standards and Technical Data: Until recently, Nigeria's building codes did not explicitly cover these materials. The absence of official standards and codes makes engineers and financiers hesitant to approve their use in formal projects. This gap is starting to be addressed - for instance, NBRRI has developed prototype standards for compressed earth blocks, and the government's new bamboo housing initiative implies that a code of practice for bamboo construction will be developed (Odii, 2025; Ibemere, 2025). Continued R&D and formal codification are needed to integrate these materials into the regulatory framework. Collaborations with universities and international standard bodies (like ISO or ASTM committees on sustainable construction) could accelerate the development of design guidelines and testing protocols.
- Training and Skills: Working with some of these materials requires specific skills that are not yet widespread. For instance, masonry using interlocking stabilized soil blocks, or carpentry techniques for bamboo, are not typically taught in conventional construction training in Nigeria. To build confidence and capacity, vocational curricula should incorporate sustainable construction techniques, and on-site training programs or workshops should be provided for local builders and contractors. Building a pool of skilled labor and knowledgeable professionals (engineers, architects) is essential for quality implementation. Early pilot projects should include a training component so that knowledge is transferred to the community of practice.
- Supply Chain and Scalability: For bamboo and RHA in particular, supply chain issues must be resolved to ensure scalability. Bamboo needs to be grown or harvested sustainably, then treated and distributed investments in bamboo plantations, nurseries, and treatment facilities could help ensure a steady supply of construction-grade bamboo. RHA needs collection systems at rice mills and perhaps regional processing centers to burn husks in a controlled manner and grind the ash to the fine particle size required. The government and private sector can facilitate these through incentives or public infrastructure projects (for example, setting up RHA processing plants as part

- of waste management programs). Similarly, scaling plastic brick production will require expanding waste collection and aggregation systems (perhaps through community recycling initiatives or partnerships with waste management companies).
- Financial and Market Incentives: Developers and contractors tend to be risk-averse and may prefer to stick with familiar materials unless given incentives to try alternatives. One solution is for the government to incorporate these materials into its own affordable housing schemes or public building projects, thereby creating a guaranteed initial market and showcasing their viability. Another is to provide micro-finance or subsidies to individual homebuilders or community cooperatives that choose sustainable materials, offsetting any perceived risks or higher up-front costs (though many of these materials are cheaper, initial unfamiliarity can be seen as a "risk cost"). As production and usage scale up, economies of scale and competition should drive costs down further and improve distribution, making these materials even more attractive financially.

5. RECOMMENDATIONS

To bridge the gap between potential and reality, and to promote the adoption of sustainable local materials in Nigeria's construction industry, a multi-faceted approach is needed. Based on the findings and analysis, we propose several key actions:

- Establish Material Standards and Building Codes:
 Develop, validate, and enforce standards for laterite
 blocks, bamboo construction, RHA-blended cement,
 PKS concrete, and recycled plastic bricks to ensure
 quality and safety (Odii, 2025; Ibemere, 2025).
 Agencies like NBRRI and the Standards Organisation
 of Nigeria (SON) should be empowered and funded to
 conduct testing and publish design codes or guidelines
 for these materials.
- Demonstration Projects: Implement pilot housing projects across Nigeria's different climatic zones using these materials to demonstrate their performance and build public trust. For example, construct a set of model homes or community buildings bamboobased houses in the humid south, stabilized earth houses in the arid north, plastic brick classrooms in an urban slum and monitor their success over time. Publicize the outcomes to show that they can be safe, comfortable, and appealing.
- Incentives for Local Material Production: Provide financial incentives such as tax reductions, grants, or low-interest loans for businesses and community cooperatives that produce sustainable building materials (earth blocks, RHA cement, recycled plastic lumber, etc.). This will help grow the supply chain, bring down costs through competition and innovation, and encourage entrepreneurship in this sector.

- Capacity Building and Training: Integrate sustainable construction techniques into formal education for architects, engineers, and builders. Launch training programs and workshops to upskill tradespeople in methods like earth construction, bamboo framing, and plastic brick construction. Additionally, conduct public awareness campaigns highlighting the benefits and modern examples of such housing (Mmuo, 2024), which can help shift perceptions and build acceptance.
- Incorporation into Housing Programs: Mandate or incentivize that a percentage of materials used in government-funded housing projects come from locally sourced sustainable materials. For instance, require that, say, 30% of the materials in a new public housing development be comprised of laterite, bamboo, or other alternatives. This not only creates immediate demand but also "mainstreams" these materials in the eyes of developers and financiers.
- Continued Research and Development: Support ongoing interdisciplinary research to refine material techniques such as improving water resistance of earth blocks with natural additives, developing cost-effective bamboo jointing and preservation methods, or enhancing the fire retardance of plastic composites. Partnerships with international experts can keep Nigeria abreast of global advancements (for example, new bio-based composite materials or more efficient production machinery).
- Monitoring and Evaluation: As projects using these materials are deployed, establish monitoring and evaluation frameworks to track their performance (structural integrity, user satisfaction, maintenance issues, etc.). Use this feedback to update standards and best practices. Early identification of any issues will allow for quick solutions and continuous improvement of techniques, ensuring long-term success and credibility.

6. CONCLUSION

This study has examined the development of sustainable low-cost building materials using locally available resources in Nigeria, focusing on laterite, bamboo, rice husk ash, palm kernel shells, and recycled plastics. The findings affirm that these materials – rooted in Nigeria's geography and economy – hold immense promise for addressing the nation's housing deficit in a sustainable manner. In summary, several key insights emerge:

Sustainability and Affordability Synergy: The locally sourced materials investigated are not only more environmentally sustainable (due to lower embodied energy and the reuse of wastes) but also more affordable than conventional imported materials. Laterite and earth blocks can significantly cut building costs while providing climate-appropriate housing (Mudi Yar' Adua & Kakale, 2016). Bamboo and agricultural waste derivatives like RHA and PKS turn

- renewable or recycled resources into construction value, reducing reliance on expensive cement and steel (Abdulazeez et al., 2022; Mohammed et al., 2021). Recycled plastic bricks exemplify a circular economy solution, simultaneously reducing waste management burdens and construction expenses (Brickify, 2024). These dual benefits reinforce that sustainability and affordability can be pursued together, not at odds with each other.
- Mechanical Viability: Across the board, the materials demonstrate mechanical performance adequate for many types of residential construction. With proper engineering and treatment, they can meet standard safety requirements - for example, stabilized laterite blocks for walls, bamboo for structural frames or reinforcements, RHA-blended concrete achieving normal strength levels (Abdulazeez et al., 2022), PKS concrete fulfilling structural lightweight criteria (Mohammed et al., 2021), and plastic bricks being successfully used in load-bearing applications. While each material has its limitations (such as bamboo's need for protection against pests or earth's need for moisture sealing), these can be addressed through established techniques. There appears to be no fundamental technical barrier to using these materials for durable, safe housing up to at least two stories, which covers the vast majority of Nigeria's housing
- Environmental and Climate Advantages: Using these materials can considerably reduce the carbon footprint and overall environmental impact of building. By cutting down on cement usage (through RHA, PKS, etc.), avoiding high-temperature processes (laterite blocks, recycled plastic bricks), and sequestering carbon (bamboo), they contribute to climate change mitigation. Moreover, by utilizing local and waste resources, they alleviate pressure on ecosystems from mining and waste disposal. These features align with global and national sustainability goals, suggesting that adopting such materials will improve Nigeria's environmental performance and resilience to climate stresses. In essence, sustainable housing materials can become cornerstone of climate-resilient development, enabling communities to build in ways that harmonize with the environment rather than degrade it.
- Multidisciplinary Integration: The study underscores the importance of a multidisciplinary approach – combining engineering, environmental science, and architectural perspectives – in advancing sustainable construction. Civil engineering inputs ensure structural integrity and help optimize material performance (through mix design, stabilization, etc.), environmental science provides life-cycle validation that these choices are indeed "greener," and architecture/urban planning ensures that the materials are used in culturally acceptable and functionally

- appropriate ways. The successful cases cited (from prototype houses to community pilots) all involved collaboration across these fields. Going forward, continued interdisciplinary research and pilot implementations will be vital to refine techniques (such as developing modern prefabrication systems for bamboo, or composite blocks that incorporate RHA/PKS) and to address any emerging challenges.
- Pathways for Adoption: For Nigeria to fully reap the benefits of these local materials, the study recommends concrete steps: updating building regulations to include and guide the use of laterite, bamboo, and other alternatives; incentivizing local industries and training programs to build capacity; initiating demonstration housing projects that can serve as proof-of-concept and public education; and integrating these materials into national housing initiatives and climate policies. The government's role is particularly critical - both as a regulator (to set standards) and as an enabler (to provide incentives and absorb initial risks) – in overcoming market inertia and encouraging early adoption. International support in the form of knowledge transfer, technical assistance, or climate financing could also accelerate progress. given the global relevance of reducing construction emissions and sharing sustainable housing models across developing countries.

ACKNOWLEDGMENTS

The authors gratefully acknowledge the financial support provided by the Tertiary Education Trust Fund (TETFund) through the Institutional-Based Research (IBR) grant at The Federal Polytechnic Ukana. This funding was instrumental in facilitating the research and ensuring the successful completion of this study.

REFERENCES

- Abdulazeez, A. S., Yunusa, U., Mohammed, T., & Hamza, B. (2022). Strength performance of concrete produced with rice husk ash as partial replacement of cement. *African Journal of Environmental Sciences and Renewable Energy*, 5(1), 1–15.
- Brickify. (2024). Plastic waste to bricks for low-cost housing Project profile. *New Africa Fund*. Retrieved from https://www.newafricafund.org/our-grantees/brickify
- Ibemere, D. (2025, June 13). FG plans to build bamboo houses for Nigerians as traders quote new price for Dangote, BUA cement. *Legit.ng News*. Retrieved from https://www.legit.ng/business-economy/industry/1659551-fg-announces-plan-build-bamboo-houses-names-beneficiaries/
- Mmuo, C. (2024, February 20). Alternative building materials

- in Nigeria. *ScienceNaija*. Retrieved from https://sciencenaija.com/alternative-building-materials-in-nigeria
- Mohammed, A. K., Ajiboye, S. E., Zubar, F. L., & Onuche, A. S. (2021). Strength characterization and cost efficiency of using palm kernel shell in lightweight concrete for pavement works. *The International Journal of Engineering and Science (IJES)*, 10(9), 50–54. https://doi.org/10.9790/1813-1009015054
- Mudi Yar' Adua, M., & Kakale, A. U. (2016). Sustainable environment: Laterite as sustainable building materials in the construction industry. *International Journal of Advances in Mechanical and Civil Engineering*, 3(2), 70–73. Retrieved from http://ijamce.iraj.in/paper_detail.php?paper_id=4328
- Odii, J. (2025, June 11). Nigeria's bamboo gamble amid soaring construction costs. *ModernGhana*. Retrieved from https://www.modernghana.com/news/1409300/nigeri as-bamboo-gamble-amid-soaring-construction.html
- Staff Writer. (2024, September 9). From Nigeria to Kenya: Entrepreneurs turning Africa's plastic waste into wealth. *How We Made It In Africa*. Retrieved from https://www.howwemadeitinafrica.com/from-nigeria-to-kenya-entrepreneurs-turning-africas-plastic-waste-into-wealth/174792/