Radiological Risk Assessment of Primordial Radionuclides in Catfish Samples from Commercial Fish Ponds In Osogbo, Osun State, Nigeria

Authors

  • Efunwole, H.O Osun State Polytechnic, Iree, Osun State, Nigeria Author
  • Orisadare, O.A Osun State Polytechnic, Iree, Osun State, Nigeria Author

Keywords:

Catfish, Contamination, Radiation dose, Gamma spectroscopic assembly, Radionuclides

Abstract

Fish is a primary protein source for most residents of Osogbo and Nigeria. This study verified the possibility of radioactive contamination in the study region due to catfish consumption. Using gamma spectroscopic assembly, the activity concentrations of the primordial radionuclides Uranium-238 (U-238), Thorium-232 (Th-232) and Potassium-40 (K-40) were assessed in catfish. Thereafter, the committed effective dose resulting from catfish consumption was determined from the measured activity concentrations of U-238, Th-232 and K-40 for the residents of the research region. The projected yearly committed effective doses found in this investigation were less than the public's allowed limit of 1.0 mSv/y, according to the findings. This suggests there is no significant harm to the population's radiological health from the radiation dosage obtained from consuming the examined catfish samples. However, the long-term health risks, particularly from uranium and thorium, remain a concern due to their carcinogenic and mutagenic properties. To mitigate these risks, it is recommended to implement radionuclide monitoring programmes by regulatory bodies and to create public awareness regarding potential risks associated with consumption of fish with elevated radionuclide concentrations.

Downloads

Download data is not yet available.

Author Biographies

  • Efunwole, H.O, Osun State Polytechnic, Iree, Osun State, Nigeria

    Department of Science Laboratory Technology

  • Orisadare, O.A, Osun State Polytechnic, Iree, Osun State, Nigeria

    Department of Science Laboratory Technology

References

Adamu, R., Zakari, Y. I., Ahmed, A. Y., Abubakar, S., & Vatsa, A. M. (2013). Analysis of activity concentrations due to natural radionuclides in the fish of Kainji Lake. Advances in Applied Science Research, 4(4), 283–287.

Adeleye, M. O., Musa, B., Oyebanjo, O., Gbenu, S. T., & Alayande, S. O. (2020). Activity concentration of natural radionuclides and assessment of the associated radiological hazards in the marine croaker (pseudotolitus typus) fish from two coastal areas of Nigeria. Science World Journal, 15(2), 90–95.

Adeola, A. O., Iwuozor, K. O., Akpomie, K. G., Adegoke,K. A., Oyedotun, K. O., Ighalo, J. O., Amaku, J. F., Olisah, C., & Conradie, J. (2023). Advances in the management of radioactive wastes and radionuclide contamination in environmental compartments: a review. Environmental Geochemistry and Health, 45(6), 2663–2689.

Al-Sharif, S. A., Chapara, M., El-Taher, A., And, & Osman, A. (2024). Biomonitoring of marine radioactive pollution: a review. International Journal of Nuclear Energy, 17(2–3).

Asaduzzaman, K., Mou, I. A., Kamrunnahar, Haque, M. E., Munshi, M. K., & Hossen, M. A. (2024). Radiological characterisation of freshwater fish species from strategic locations in Bangladesh. Radiation Effects and Defects in Solids, 1–24.

https://doi.org/10.1080/10420150.2024.2391773

Billa, J., Han, F., Didla, S., Yu, H., Dimpah, J., Brempong, O., & Adzanu, S. (2016). Radioactivity studies on farm raised and wild catfish produced in Mississippi, USA. Journal of Radioanalytical and Nuclear Chemistry, 307(1), 203–210. https://doi.org/10.1007/s10967-015-4159-5

Biswas, K. P., Hossain, S., Deb, N., Bhuian, A. K. M. S., Gonçalves, S. C., Hossain, S., & Hossen, M. B. (2021). Assessment of the Levels of Pollution and of Their Risks by Radioactivity and Trace Metals on Marine Edible Fish and Crustaceans at the Bay of Bengal (Chattogram, Bangladesh). In Environments (Vol. 8, Issue 2). https://doi.org/10.3390/environments8020013

Bolaji, B. B., Francis, D. S., & Ibitoruh, H. (2015). Human health impact of natural and artificial radioactivity levels in the sediments and fish of Bonny estuary, Niger Delta, Nigeria. Challenges, 6, 244–257.

Chambon, A., Klinkby, E. B., Bu, M., Murray, A. S., Kook, M., Olesen, H., Nielsen, K. B., & Lauritzen, B. (2024). Calibration of buried NaI(Tl) scintillator detectors for natural radionuclide measurement based on Monte Carlo modelling. Radiation Physics and Chemistry, 222, 111803.

https://doi.org/https://doi.org/10.1016/j.radphyschem.2 024.111803

Dowell, S. M. (2024). Utilising Plutonium Isotopes to Evaluate Soil Erosion in Tropical East African Agri- systems.

Erenturk, S., Yusan, S., Turkozu, D. A., Camtakan, Z., Olgen, M. K., & Aslani, M. A. (2014). Spatial distribution and risk assessment of radioactivity and heavy metal levels of sediment, surface water and fish samples from Lake Van, Turkey. Journal of Radioanalytical and Nuclear Chemistry, 300(3), 919– 931.

Esan, D. T., Y., A., Obed, R. I., Ojo, J., Adeola, M., & Sridhar, M. K. (2022). Measurement of Natural Radioactivity and Assessment of Radiological Hazard Indices of Soil Over the Lithologic Units in Ile-Ife Area, South-West Nigeria. Environ Health Insights., 16, 1–13.

FAO. (2020). The State of World Fisheries and Aquaculture 2020. Sustainability in Action. Rome.

Fasae, K. P., & Isinkaye, M. O. (2018). Radiological risks assessment of 238U, 232Th and 40K in fish feeds and catfish samples from selected fish farms in Ado-Ekiti, Nigeria. Journal of Radiation Research and Applied Sciences, 11, 317–322.

Ghajarbeygi, P., Ranaei, V., Pilevar, Z., Nematollahi, A., Ghanbari, S., Rahimi, H., Shirdast, H., Fakhri, Y., Mahmudiono, T., &, & Khaneghah, A. M. (2024). The concentration of radioisotopes (Potassium-40, Polonium-210, Radium-226, and Thorium-230) in fillet tissue carp fishes: A systematic review and probabilistic exposure assessment. International Journal of Environmental Health Research, 34(1), 273–294.

https://www.tandfonline.com/doi/full/10.1080/096031 23.2022.2147905?scroll=top&needAccess=true

Hesham, M., Shaban, F., Fawzy, T., Nguyen, D., & Mohammed Eldosouky, A. (2024). Spectroscopic techniques for detecting naturally occurring radioactive nuclides in geology and water: A comprehensive review and health implications. Journal of Geography and Cartography, 7, 1–33. https://doi.org/10.24294/jgc.v7i2.6909

Jibiri, N. N., & Eke, B. C. (2022). Radionuclide contents in soil, sediments and food samples, and incidences of cancer in oil producing localities in Imo State south- east Nigeria. Journal of Radiation Research and Applied Sciences, 15(2), 90–97.

Jibiri, N. N., Ugbechie, A., Sowunmi, A. A., & Akomolafe, I. R. (2023). Radionuclide contents in sediment and seafood from Makoko Lagoon, Lagos State, Nigeria. Marine Pollution Bulletin, 192, 114992.

Khandaker, M. U., Olatunji, M. A., Shuib, K. S. K., Hakimi, N. A., Nasir, N. L. M., Asaduzzaman, K., Amin, Y. M., & Kassim, H. A. (2015). Natural radioactivity and effective dose due to the bottom sea and estuaries marine animals in the coastal waters around Peninsular Malaysia. Radiation Protection Dosimetry, 167(1–3), 196–200. https://doi.org/10.1093/rpd/ncv243

Mahdi, F. A., Majeed, F. A., & Salih, N. A. (2025). Investigating natural radionuclides in corn flakes consumed in Iraq. In T. S. I. C. O. S. R. A. I. 2023 (2ICSRI2023), 25–26 August 2023, & U. Cincinnati (Eds.), In AIP Conference Proceedings. AIP (Vol. 3169, Issue 1). AIP Publishing. https://pubs.aip.org/aip/acp/article- abstract/3169/1/050003/3335054/Investigating- natural-radionuclides-in-corn-flakes

Michalik, B., Dvorzhak, A., Pereira, R., Lourenço, J., Haanes, H., Di Carlo, C., Nuccetelli, C., Venoso, G., Leonardi, F., & Trevisi, R. (2023). A methodology for the systematic identification of naturally occurring radioactive materials (NORM). Science of the Total Environment, 881, 163324.

Mollah, A. S., & Ferdous, M. J. (2025). Distribution of Radionuclides in Soil and Their Entry into Food through Uptake by Plants. In Radionuclide Uptake in Food and Consequences for Humans (pp. 1–54). World Scientific.

Muhammad, A. N., Ismail, A. F., & Garba, N. N. (2024). Natural radioactivity in food crops and soil and estimation of the concomitant dose from tin mining areas in Nigeria. Journal of Taibah University for Science, 18(1). https://www.tandfonline.com/doi/full/10.1080/165836 55.2024.2366507#d1e194

Nabil, I. M., El-Kourghly, K. M., Mohamed, Y., El- Gammal, W., & Ebaid, Y. Y. (2024). Enhancing accuracy in gamma-ray spectrometry: mathematical methodology for self-attenuation correction in radioactive samples analysis. Radiation Detection Technology and Methods, 8(4), 1641–1651. https://doi.org/10.1007/s41605-024-00488-3

Ozmen, S. F., & Yilmaz, M. (2020). Radioactivity concentrations of farmed and wild European seabass (Dicentrarchus labrax L., 1758) in the eastern Mediterranean and risk assessment of their consumption. Regional Studies in Marine Science, 36, 101316. https://doi.org/https://doi.org/10.1016/j.rsma.2020.101 316

Pandion, K., Mayanib, S. V., Nikamc, R. J., Saranb, A., & Deivi Arunachalam, K. (2024). Naturally occurring radionuclides intake of fish diversity by inhabitants around the nuclear power plant, based on the market basket sampling (MBS) approach. Environ. Sci. Open Access, 2(1). https://www.researchgate.net/profile/Pandion- Kumar/publication/380606690_Naturally_Occurring_ Radionuclides_Intake_of_Fish_Diversity_by_Inhabita nts_around_the_Nuclear_Power_Plant_Based_on_the Market_Basket_Sampling_MBS_Approach/links/664 736a30b0d2845743bdfd5/Naturally-Occurring- Radionuclides-Intake-of-Fish-Diversity-by- Inhabitants-around-the-Nuclear-Power-Plant-Based- on-the-Market-Basket-Sampling-MBS-Approach.pdf

Patra, A. C., Mohapatra, S., Sahoo, S. K., Lenka, P., Dubey, J. S., & Thakur, V. K. (2014). Assessment of ingestion dose due to radioactivity in selected food matrices and water near Vizag, India. Journal of Radioanalytical and Nuclear Chemistry, 300(3), 903 – 910.

Pelić, M., Mihaljev, Ž., Živkov Baloš, M., Popov, N., Gavrilović, A., Jug-Dujaković, J., & Ljubojević Pelić,

D. (2023). The activity of natural radionuclides Th- 232, Ra-226, K-40, and Na-22, and anthropogenic Cs- 137, in the water, sediment, and common carp produced in purified wastewater from a slaughterhouse. Sustainability, 15(16), 12352.

Sadeghi, N., Jabbari, S., & Behzad, M. (2024). Gross alpha/beta and radionuclide activity concentrations in soil, plant and some fruits around the Tehran Research Reactor. Applied Radiation and Isotopes, 210, 111360. https://doi.org/https://doi.org/10.1016/j.apradiso.2024. 111360

Santofimia, E., González, F. J., Tomas, B. R., Pamo, E. L., Marino, E., Reyes, J., & Bellido, E. (2022). The mobility of thorium, uranium and rare earth elements from Mid Ordovician black shales to acid waters and its removal by goethite and schwertmannite.

Chemosphere, 307(2), 1–16.

Wais, T. Y., Namq, B. F., Najam, L. A., Khalaf, H. N. B., Gismelseed, A. M., Mansour, H., & Mostafa, M. Y. A. (2025). Natural and artificial radioactivity levels in the agricultural soil of lands near the Al-Kasak oil refinery, northern Iraq. Journal of Radioanalytical and Nuclear Chemistry, 334(2), 1471–1484. https://doi.org/10.1007/s10967-024-09912-w

Widya, L. K., Rezaie, F., Lee, J., Lee, J., Park, B. R., Yoo, J., Lee, W., & Lee, S. (2025). AI-Driven Geospatial Analysis of Indoor Radon Levels: A Case Study in Chungcheongbuk-do, South Korea. Earth Systems and Environment, 1–19.

Additional Files

Published

2025-09-23

Issue

Section

Science, Engineering and Innovation

How to Cite

Efunwole, H., & Orisadare, O. (2025). Radiological Risk Assessment of Primordial Radionuclides in Catfish Samples from Commercial Fish Ponds In Osogbo, Osun State, Nigeria. Academic World-Journal of Scientific and Engineering Innovation , 1(1). https://academicworldpublisher.co.uk/index.php/awjsei/article/view/62